The role of crystal packing on the optical response of trialkyltetrelethynyl acenes

Author:

Huang Ling-Yi1ORCID,Ai Qianxiang1ORCID,Risko Chad1ORCID

Affiliation:

1. Department of Chemistry and Center for Applied Energy Research, University of Kentucky, Lexington, Kentucky 40506, USA

Abstract

The electronic and optical responses of an organic semiconductor (OSC) are dictated by the chemistries of the molecular or polymer building blocks and how these chromophores pack in the solid state. Understanding the physicochemical nature of these responses is not only critical for determining the OSC performance for a particular application, but the UV/visible optical response may also be of potential use to determine aspects of the molecular-scale solid-state packing for crystal polymorphs or thin-film morphologies that are difficult to determine otherwise. To probe these relationships, we report the quantum-chemical investigation of a series of trialkyltetrelethynyl acenes (tetrel = silicon or germanium) that adopt the brickwork, slip-stack, or herringbone (HB) packing configurations; the π-conjugated backbones considered here are pentacene and anthradithiophene. For comparison, HB-packed (unsubstituted) pentacene is also included. Density functional theory and G0W0 (single-shot Green’s function G and/or screened Coulomb function W) electronic band structures, G0W0-Bethe–Salpeter equation-derived optical spectra, polarized ϵ2 spectra, and distributions of both singlet and triplet exciton wave functions are reported. Configurational disorder is also considered. Furthermore, we evaluate the probability of singlet fission in these materials through energy conservation relationships.

Funder

National Science Foundation

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3