Affiliation:
1. State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
2. College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
Abstract
The generation of perpendicular effective magnetic field or perpendicular spins ( σz) is central for the development of energy-efficient, scalable, and external-magnetic-field-free spintronic memory and computing technologies. Here, we report the first identification and the profound impacts of a significant effective perpendicular magnetic field that can arise from asymmetric current spreading within magnetic microstrips and Hall bars. This effective perpendicular magnetic field can exhibit all the three characteristics that have been widely assumed in the literature to “signify” the presence of a flow of σz, i.e., external-magnetic-field-free current switching of uniform perpendicular magnetization, a sin 2 φ-dependent contribution in spin-torque ferromagnetic resonance signal of in-plane magnetization ( φ is the angle of the external magnetic field with respect to the current), and a φ-independent but field-dependent contribution in the second harmonic Hall voltage of in-plane magnetization. This finding suggests that it is critical to include current spreading effects in the analyses of various spin polarizations and spin–orbit torques in the magnetic heterostructure. Technologically, our results provide a perpendicular effective magnetic field induced by asymmetric current spreading as a novel, universally accessible mechanism for efficient, scalable, and external-magnetic-field-free magnetization switching in memory and computing technologies.
Subject
General Physics and Astronomy
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献