Current-induced perpendicular effective magnetic field in magnetic heterostructures

Author:

Liu Qianbiao1,Zhu Lijun12ORCID

Affiliation:

1. State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China

2. College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China

Abstract

The generation of perpendicular effective magnetic field or perpendicular spins ( σz) is central for the development of energy-efficient, scalable, and external-magnetic-field-free spintronic memory and computing technologies. Here, we report the first identification and the profound impacts of a significant effective perpendicular magnetic field that can arise from asymmetric current spreading within magnetic microstrips and Hall bars. This effective perpendicular magnetic field can exhibit all the three characteristics that have been widely assumed in the literature to “signify” the presence of a flow of σz, i.e., external-magnetic-field-free current switching of uniform perpendicular magnetization, a sin 2 φ-dependent contribution in spin-torque ferromagnetic resonance signal of in-plane magnetization ( φ is the angle of the external magnetic field with respect to the current), and a φ-independent but field-dependent contribution in the second harmonic Hall voltage of in-plane magnetization. This finding suggests that it is critical to include current spreading effects in the analyses of various spin polarizations and spin–orbit torques in the magnetic heterostructure. Technologically, our results provide a perpendicular effective magnetic field induced by asymmetric current spreading as a novel, universally accessible mechanism for efficient, scalable, and external-magnetic-field-free magnetization switching in memory and computing technologies.

Publisher

AIP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3