Tracking ultrafast non-adiabatic dissociation dynamics of the deuterated water dication molecule

Author:

Iskandar W.1ORCID,Rescigno T. N.1ORCID,Orel A. E.2ORCID,Larsen K. A.13ORCID,Severt T.4ORCID,Streeter Z. L.15,Jochim B.4ORCID,Griffin B.16,Call D.6ORCID,Davis V.6ORCID,McCurdy C. W.15ORCID,Lucchese R. R.1ORCID,Williams J. B.6,Ben-Itzhak I.4ORCID,Slaughter D. S.1ORCID,Weber T.1ORCID

Affiliation:

1. Chemical Sciences Division, Lawrence Berkeley National Laboratory 1 , Berkeley, California 94720, USA

2. Chemical Engineering, University of California 2 , Davis, California 95616, USA

3. Graduate Group in Applied Science and Technology, University of California 3 , Berkeley, California 94720, USA

4. J. R. Macdonald Laboratory, Department of Physics, Kansas State University 4 , Manhattan, Kansas 66506, USA

5. Department of Chemistry, University of California 5 , Davis, California 95616, USA

6. Department of Physics, University of Nevada 6 , Reno, Nevada 89557, USA

Abstract

We applied reaction microscopy to elucidate fast non-adiabatic dissociation dynamics of deuterated water molecules after direct photo-double ionization at 61 eV with synchrotron radiation. For the very rare D+ + O+ + D breakup channel, the particle momenta, angular, and energy distributions of electrons and ions, measured in coincidence, reveal distinct electronic dication states and their dissociation pathways via spin–orbit coupling and charge transfer at crossings and seams on the potential energy surfaces. Notably, we could distinguish between direct and fast sequential dissociation scenarios. For the latter case, our measurements reveal the geometry and orientation of the deuterated water molecule with respect to the polarization vector that leads to this rare 3-body molecular breakup channel. Aided by multi-reference configuration-interaction calculations, the dissociation dynamics could be traced on the relevant potential energy surfaces and particularly their crossings and seams. This approach also unraveled the ultrafast time scales governing these processes.

Funder

U.S. Department of Energy

National Science Foundation

National Energy Research Scientific Computing Center

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3