Effects of carbon impurities on the performance of silicon as an anode material for lithium ion batteries: An ab initio study

Author:

Olou’ou Guifo Stéphane B.12ORCID,Mueller Jonathan E.1ORCID,Henriques David2ORCID,Markus Torsten2

Affiliation:

1. Volkswagen Group, Berliner Ring 2, D-38436 Wolfsburg, Germany

2. Institute of Materials Science and Engineering, Mannheim University of Applied Sciences, Paul-Wittsack-Straße 10, D-68153 Mannheim, Germany

Abstract

Silicon is widely used in the semiconductor industry and has recently become very attractive as a lithium ion battery anode due to its high capacity. However, volume changes associated with repeated lithiation–delithiation cycles expose fresh silicon surfaces to the electrolyte, causing irreversible side reactions. Moreover, silicon suffers from a poor electronic conductivity at a low lithium content. Carbon impurities originating at synthesis or resulting from subsequent contact with other electrode components are often neglected. However, atomistic simulations reveal that dissolved carbon decreases the local potential energy surface by drawing the electron density from silicon to form polar covalent C–Si bonds that are stronger than the non-polar covalent Si–Si bonds they replace. This leads to a higher density and elastic stiffness, regardless of the interstitial lithium concentration. Substitutional carbon also reduces the mobility of silicon self-vacancies and interstitial lithium by increasing their diffusion barriers by 24.7 and 27.3 kJ mol−1, respectively. Moreover, the [carbon, silicon vacancy] complex is basically stable, while the [carbon, lithium] complex is found to become stable against both single defects at a spacing of 4.72 Å. The minimum energy paths ultimately demonstrate that both the interstitialcy and dissociative mechanisms are mainly responsible for carbon diffusion in silicon.

Publisher

AIP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3