Atomic insight into the BEOL thermal budget on phase transition of phase change memory cells

Author:

Qi Ruijuan12ORCID,Sui Fengrui2ORCID,Huang Rong2ORCID,Song Sannian1,Li Xi1,Song Zhitang1

Affiliation:

1. National Key Laboratory of Materials for Integrated Circuits, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences 1 , Shanghai 200050, China

2. Key Laboratory of Polar Materials and Devices (MOE) and Department of Electronics Sciences, School of Physics and Electronic Science, East China Normal University 2 , Shanghai 200062, China

Abstract

Research works on phase change random access memory (PCRAM) based on Ge–Sb–Te (GST) phase change materials have achieved exciting progress, but the industrialization of PCRAM still faces big challenges, including unsatisfied endurance property or unexpected cell structure failure during fabrication. Here, we investigate the impact of the thermal budget in back-end-of-line (BEOL) process on the microstructure evolution of carbon doped GST (CGST) cells. We demonstrate that the as-deposited amorphous CGST in the confined memory cell will transform to face centered-cubic (FCC) phase with uniform grain size during high temperature up to 400 °C in the BEOL process. However, if there is much more unexpected thermal budget during the BEOL process, the FCC-CGST grains will further grow and transform to highly ⟨0001⟩ oriented single crystalline hexagonal (HEX) GST, together with the formation of voids, leading to the structure failure of the storage cells. By virtue of the advanced spherical aberration corrected transmission electron microscopy (Cs-TEM), we find that there are randomly stacked seven-layered and nine-layered atomic arrangements in single crystalline HEX-GST, corresponding to the chemical stoichiometry of Ge2Sb2Te5 and Ge1Sb2Te4, respectively. Interestingly, twin crystal with the coexistence of vacancy-ordered FCC-GST and HEX-GST on the different twin boundary is observed, indicating that the twin crystals play a critical role in the coalescence and the growth of FCC-GST. This work not only sheds light on the structure failure mechanism of GST cell but also provided additional insight into the formation of HEX-phase in a confined GST memory cell.

Funder

National Natural Science Foundation of China

Strategic Priority Research Program of the Chinese Academy of Sciences

Science and Technology Council of Shanghai

National Key Research and Development Program of China

China Postdoctoral Science Foundation

Publisher

AIP Publishing

Subject

Physics and Astronomy (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3