Fast loaded dual species magneto optical trap of cold sodium and potassium atoms with light-assisted inter-species interaction

Author:

Sutradhar Sagar1ORCID,Misra Anirban1ORCID,Pal Gourab1ORCID,Majumder Sayari1ORCID,Roy Sanjukta1ORCID,Chaudhuri Saptarishi1ORCID

Affiliation:

1. Raman Research Institute , C. V. Raman Avenue, Sadashivanagar, Bangalore 560080, India

Abstract

We present the design, implementation, and detailed experimental characterization and comparison with numerical simulations of two-dimensional magneto-optical traps (MOTs) of bosonic 23Na and 39K atoms for loading the cold atomic mixture in a dual-species 3DMOT with a large number of atoms. We report our various measurements pertaining to the characterization of two 2D+MOTs via the capture rate in the 3DMOT and also present the optimized parameters for the best performance of the system of the cold atomic mixture. Under the optimized condition, we capture more than 3 × 101039K atoms and 5.8 × 10823Na atoms in the 3DMOT simultaneously from individual 2D+MOTs with a capture rate of 5 × 1010 and 3.5 × 108 atoms/sec for 39K and 23Na, respectively. We also demonstrate improvements of more than a factor of 5 in the capture rate in the 3DMOT from the cold atomic sources when a relatively high-power ultraviolet light is used to cause light-induced atomic desorption in the 2D+MOT glass cells. A detailed study of the light assisted interspecies cold collisions between the co-trapped atoms is presented, and interspecies loss coefficients have been determined to be βNaK ∼ 2 × 10−12 cm3/sec. The cold atomic mixture would be useful for further experiments on quantum simulation with ultra-cold quantum mixtures in optical potentials.

Funder

Ministry of Electronics and Information Technology

Department of Science and Technology, Ministry of Science and Technology, India

Publisher

AIP Publishing

Subject

General Physics and Astronomy

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3