Fabrication of polydimethylsiloxane/graphene flexible strain sensors by using the scraping and coating method

Author:

Zhang Zhou Q.12,Zhang Xue L.1,Xu Guang S.1,Liu Xue J.1,Guo Q.1,Feng Z.1,Jia Jiang T.1,Ku Peng T.1

Affiliation:

1. School of Mechanical and Electrical Engineering, Xi’an Polytechnic University, No. 19, Jinhua south road, Xi’an, Shaanxi 710048, China

2. Shaanxi Provincial Key Laboratory of Functional Garment Fabric, Xi’an Polytechnic University, No. 19, Jinhua south road, Xi’an, Shaanxi 710048, China

Abstract

Production of flexible strain sensors is complex, time-consuming, and expensive. In this study, a novel fabrication method of polydimethylsiloxane/graphene nanocomposite conductive materials was proposed by using the scraping and coating method for manufacturing sandwich-shape flexible strain sensors. A ZQ-60B tensile testing machine was employed to test the mechanical properties of flexible sensors with 1%, 3%, and 5% graphene content. The results revealed that the stress and strain of the flexible strain sensor exhibited a linear relationship, and the linear correlation coefficients were 0.99706, 0.99819, and 0.99826, respectively. The concentration of graphene was 1%, 3%, and 5%, and the gauge factors (GFs) of the sensor were 24, 6, and 3, respectively. With the increase in the graphene content, the GF decreased gradually. This phenomenon could be attributed to tunneling, which increased the number of conductive pathways with an increase in the graphene content. Furthermore, the sensor exhibited excellent stability after 100 cycles of stretching/scaling. The finger joint bending test revealed that the flexible strain sensor is reproducible and exhibits excellent application prospects in monitoring human movement and health.

Funder

Zhouqiang Zhang Key Scientific Research Plan of Education Department of Shaanxi Province

National Natural Science Foundation of China

Natural Science Foundation of Shaanxi Province

Zhouqiang Zhang Produce-Learn-Research Project of Keqiao Graduate School of Xi'an Polytechnic University

Publisher

AIP Publishing

Subject

Instrumentation

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3