Structural and electrostatic properties between pH-responsive polyelectrolyte brushes studied by augmented strong stretching theory

Author:

Sin Jun-Sik1ORCID

Affiliation:

1. Natural Science Center, Kim Il Sung University, Taesong District, Pyongyang, Democratic People’s Republic of Korea

Abstract

In this paper, we study electrostatic and structural properties between pH-responsive polyelectrolyte brushes by using a strong stretching theory accounting for excluded volume interactions, the density of polyelectrolyte chargeable sites, and the Born energy difference between the inside and outside of the brush layer. In a free energy framework, we obtain self-consistent field equations to determine electrostatic properties between two pH-responsive polyelectrolyte brushes. We elucidate that in the region between two pH-responsive polyelectrolyte brushes, electrostatic potential at the centerline and osmotic pressure increase not only with excluded volume interaction but also with the density of chargeable sites on a polyelectrolyte molecule. Importantly, we clarify that when two pH-responsive polyelectrolyte brushes approach each other, the brush thickness becomes short and that a large excluded volume interaction and a large density of chargeable sites yield the enhanced contract of polyelectrolyte brushes. In addition, we also demonstrate how the influence of such quantities as pH, the number of Kuhn monomers, the density of charged sites, the lateral separation between adjacent polyelectrolyte brushes, and Kuhn length on the electrostatic and structural properties between the two polyelectrolyte brushes is affected by the exclusion volume interaction. Finally, we investigate the influence of the Born energy difference on the thickness of polyelectrolyte brushes and the osmotic pressure between two pH-responsive polyelectrolyte brushes.

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3