Understanding the physics of hydrophobic solvation

Author:

Coe Mary K.1ORCID,Evans Robert1ORCID,Wilding Nigel B.1ORCID

Affiliation:

1. H. H. Wills Physics Laboratory, Royal Fort, University of Bristol, Bristol BS8 1TL, United Kingdom

Abstract

Simulations of water near extended hydrophobic spherical solutes have revealed the presence of a region of depleted density and accompanying enhanced density fluctuations. The physical origin of both phenomena has remained somewhat obscure. We investigate these effects employing a mesoscopic binding potential analysis, classical density functional theory (DFT) calculations for a simple Lennard-Jones solvent, and Grand Canonical Monte Carlo (GCMC) simulations of a monatomic water (mw) model. We argue that the density depletion and enhanced fluctuations are near-critical phenomena. Specifically, we show that they can be viewed as remnants of the critical drying surface phase transition that occurs at bulk liquid–vapor coexistence in the macroscopic planar limit, i.e., as the solute radius R s → ∞. Focusing on the radial density profile ρ( r) and a sensitive spatial measure of fluctuations, the local compressibility profile χ( r), our binding potential analysis provides explicit predictions for the manner in which the key features of ρ( r) and χ( r) scale with R s, the strength of solute–water attraction ɛ sf, and the deviation from liquid–vapor coexistence of the chemical potential, δμ. These scaling predictions are confirmed by our DFT calculations and GCMC simulations. As such, our theory provides a firm basis for understanding the physics of hydrophobic solvation.

Funder

Leverhulme Trust

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3