Investigation of the clock transition and its pressure-dependent behavior of the trigonal 171Yb3+ centers in lithium niobate crystal

Author:

Abstract

The application of rare earth (RE) doped crystals in quantum information processing has attracted more and more attention in the past decade. How to change the clock transitions of RE ion in crystal and control their lifetime of maintaining coherent quantum state is a valuable question. In this work, the trigonal 171Yb3+ centers in lithium niobate (LN) crystal are investigated theoretically to obtain their accurate ground and excited hyperfine sublevels under external magnetic field B by a combined method of density functional theory-based geometric optimization and parametric effective Hamiltonian modeling. An optical clock transition at |B| = 45.73 mT along the c axis of the LN crystal is successfully found by calculation. To show the pressure-dependent behavior of optical clock transition, the variation of such transition under hydrostatic pressure up to 3 GPa is also obtained theoretically. The calculated results show that applying external pressure is an effective way to control these transitions of RE ion doped crystal. Moreover, the optical coherence time T2 at zero magnetic field for 171Yb3+ ion with C3 symmetry in the LN crystal is estimated by our calculations. The calculated results indicate that if the magnetic field noise is 33 μT in the LN crystal, it is possible to find an optical clock transition with long coherence time T2 (≈382 μs) at the zero magnetic field. The present methods of seeking optical clock transition and calculating its coherence time T2 caused by a fluctuating magnetic field noise in the host crystal can be applied to other Kramers RE ions doped materials.

Funder

National Natural Science Foundation of China

Publisher

AIP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3