Microstructure evolution and twinning-induced plasticity (TWIP) in hcp rare-earth high- and medium-entropy alloys (HEAs and MEAs) due to tensile deformation

Author:

Rosenkranz Laura1ORCID,Lan Qianqian2ORCID,Heczko Milan34ORCID,Egan Ashton J.3ORCID,Mills Michael J.3,Feuerbacher Michael2ORCID,Glatzel Uwe1ORCID

Affiliation:

1. Metals and Alloys, University of Bayreuth 1 , Bayreuth 95447, Germany

2. Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons, Forschungszentrum Jülich GmbH 2 , Jülich 52428, Germany

3. Center for Electron Microscopy and Analysis, The Ohio State University 3 , Columbus, Ohio 43212, USA

4. Institute of Physics of Materials, Czech Academy of Sciences 4 , Brno 61600, Czech Republic

Abstract

The microstructure evolution due to the tensile deformation of the equiatomic quinary high-entropy alloy Ho-Dy-Y-Gd-Tb (HEA-Fb) is assessed. HEA-Fb has extraordinarily similar alloying elements. It is one of the few hexagonal-close-packed single-phase representatives of HEA. HEA-Fb is compared to the equiatomic quaternary medium-entropy alloy (MEA) Ho-Dy-Gd-Tb with no Y (4-Y). For a hexagonal HEA, in contrast to the cubic HEA, little information on plastic deformation and underlying mechanisms is available. A detailed study using electron microscopy-based multi-scale characterization (SEM, S/TEM, and STEM-EDS) explains significant differences between the ductile behavior of the quaternary MEA 4-Y and the brittle behavior of the quinary HEA-Fb at room temperature. Twinning during plastic deformation is decisive for ductility, which challenges the widely discussed high-entropy effect on the mechanical behavior of the HEA. For the quaternary MEA 4-Y, a twinning-induced plasticity effect is found. In the latter, oxidized twins are present in the undeformed state. In both alloys, the twin orientations are indexed as [2¯201], while the matrices have the perpendicular [112¯0] orientation. Additionally, the analysis of twin structures confirms the importance of twin boundaries as obstacles for dislocations and stacking fault mobilities. The results are discussed in the context of the existing knowledge gaps in the field of hexagonal MEAs and HEAs.

Funder

Deutsche Forschungsgemeinschaft

Publisher

AIP Publishing

Reference51 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3