Predicting wind farm wake losses with deep convolutional hierarchical encoder–decoder neural networks

Author:

Romero David A.1ORCID,Hasanpoor Saeede1ORCID,Antonini Enrico G. A.2ORCID,Amon Cristina H.1ORCID

Affiliation:

1. Mechanical and Industrial Engineering, University of Toronto 1 , Toronto, Ontario M5S 3G8, Canada

2. RFF-CMCC European Institute on Economics and the Environment (EIEE), Centro Euro-Mediterraneo sui Cambiamenti Climatici (CMCC) 2 , Milan, Lombardy, Italy

Abstract

Wind turbine wakes are the most significant factor affecting wind farm performance, decreasing energy production and increasing fatigue loads in downstream turbines. Wind farm turbine layouts are designed to minimize wake interactions using a suite of predictive models, including analytical wake models and computational fluid dynamics simulations (CFD). CFD simulations of wind farms are time-consuming and computationally expensive, which hinder their use in optimization studies that require hundreds of simulations to converge to an optimal turbine layout. In this work, we propose DeepWFLO, a deep convolutional hierarchical encoder–decoder neural network architecture, as an image-to-image surrogate model for predicting the wind velocity field for Wind Farm Layout Optimization (WFLO). We generate a dataset composed of image representations of the turbine layout and undisturbed flow field in the wind farm, as well as images of the corresponding wind velocity field, including wake effects generated with both analytical models and CFD simulations. The proposed DeepWFLO architecture is then trained and optimized through supervised learning with an application-tailored loss function that considers prediction errors in both wind velocity and energy production. Results on a commonly used test case show median velocity errors of 1.0%–8.0% for DeepWFLO networks trained with analytical and CFD data, respectively. We also propose a model-fusion strategy that uses analytical wake models to generate an additional input channel for the network, resulting in median velocity errors below 1.8%. Spearman rank correlations between predictions and data, which evidence the suitability of DeepWFLO for optimization purposes, range between 92.3% and 99.9%.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3