Self-consistent modeling of the electron–cyclotron maser interaction in lossy structures based on a full-wave Green's function approach

Author:

Chelis I.1ORCID,Peponis D.1ORCID,Zelkas A.1

Affiliation:

1. Department of Physics, National and Kapodistrian University of Athens, 157 84 Athens, Greece

Abstract

We develop a new self-consistent model for simulation of the electron–cyclotron maser interaction in cylindrical structures, where expansion of the fields in transverse eigenmodes cannot be directly applied. Instead of solving the nonhomogeneous equation for the fields as a differential equation, a different approach is followed. First, the Green's function for elementary azimuthal and radial RF current sources is analytically derived by expanding the fields in longitudinal modes. Then, the total generated field is calculated by representing the perturbed electron beam as a sum of elementary RF current sources along the axis with amplitude coefficients that are found from the kinematic quantities of the electrons. The self-consistent stationary solution is found by solving the equations of motion along with the field equation in an iterative procedure. The model is useful for the full-wave simulation of lossy structures, which are frequently found in gyro-devices, such as ceramic-loaded interaction circuits of gyro-traveling-wave tubes and beam tunnels of gyrotron oscillators.

Funder

H2020 Euratom

Publisher

AIP Publishing

Subject

Condensed Matter Physics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3