Exchange correlation potentials from full configuration interaction in a Slater orbital basis

Author:

Tribedi Soumi12ORCID,Dang Duy-Khoi1ORCID,Kanungo Bikash3ORCID,Gavini Vikram34ORCID,Zimmerman Paul M.1ORCID

Affiliation:

1. Department of Chemistry, University of Michigan 1 , Ann Arbor, Michigan 48109, USA

2. Michigan Institute for Data Science, University of Michigan 2 , Ann Arbor, Michigan 48109, USA

3. Department of Mechanical Engineering, University of Michigan 3 , Ann Arbor, Michigan 48109, USA

4. Department of Materials Science and Engineering, University of Michigan 4 , Ann Arbor, Michigan 48109, USA

Abstract

Ryabinkin–Kohut–Staroverov (RKS) theory builds a bridge between wave function theory and density functional theory by using quantities from the former to produce accurate exchange-correlation potentials needed by the latter. In this work, the RKS method is developed and tested alongside Slater atomic orbital basis functions for the first time. To evaluate this approach, full configuration interaction computations in the Slater orbital basis are employed to give quality input to RKS, allowing full correlation to be present along with correct nuclei cusps and asymptotic decay of the wavefunction. SlaterRKS is shown to be an efficient algorithm to arrive at exchange-correlation potentials without unphysical artifacts in moderately-sized basis sets. Furthermore, enforcement of the nuclear cusp conditions will be shown to be vital for the success of the Slater-basis RKS method. Examples of weakly and strongly correlated molecular systems will demonstrate the main features of SlaterRKS.

Funder

U.S. Department of Energy

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Exact and Model Exchange-Correlation Potentials for Open-Shell Systems;The Journal of Physical Chemistry Letters;2023-11-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3