Homogenized color-gradient lattice Boltzmann model for immiscible two-phase flow in multiscale porous media

Author:

Liu Yang1ORCID,Feng Jingsen1ORCID,Min Jingchun1ORCID,Zhang Xuan2ORCID

Affiliation:

1. Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Engineering Mechanics, Tsinghua University 1 , Beijing 100084, China

2. Department of Energy and Power Engineering, School of Mechanical Engineering, Beijing Institute of Technology 2 , Beijing 100081, China

Abstract

In this paper, a homogenized multiphase lattice Boltzmann (LB) model is established for parallelly simulating immiscible two-phase flow in both solid-free regions (pore scale) and porous areas (continuum scale). It combines the color-gradient multiphase model with the Darcy–Brinkman–Stokes method by adding a term that includes surface force and drag force of porous matrix to multiple-relaxation-time LB equation in moment space. Moreover, an improved algorithm is proposed to characterize and implement the apparent wettability in the locally homogenized porosity field. Validations and test cases are given to demonstrate the accuracy and robustness of this new model, as well as its applicability for trans-scale fluid simulation of transport and sorption behavior from porous (Darcy flow) area to free (Stokes flow) area. For practicality, the two-phase seepage flow in a composite rock structure with multiscale pores is simulated by this new model, and the effects of viscosity ratio and wettability on the displacement process are discussed.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

AIP Publishing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3