A novel apparent permeability model for shale considering the influence of multiple transport mechanisms

Author:

Chen ShuaiORCID,Peng XulinORCID

Abstract

Changes in pore pressure during the extraction of shale gas lead to dynamic alterations in the pore structure and permeability, making it challenging to gain a comprehensive understanding of the flow behaviors of shale gas. The pore structure of shale is complex, with a variety of storage modes and gas transport processes constrained by a number of factors. For instance, when gas flows through a transport channel with a finite length, it is imperative to take into account the flow loss caused by the bending of inlet and outlet streamlines, prior models typically neglect the impact of end effects, resulting in an exaggerated estimation of the shale permeability. Furthermore, a decrease in pore pressure corresponds to an increase in the Knudsen number, resulting in the breakdown of the continuity assumption of the Navier–Stokes equation, this signifies the gradual shift of the transport regimes from continuum flow to other transport regimes. The gas flow process is nonlinear due to the alternating impact of multicomponent transport mechanisms and various microscale effects. In this paper, we presented a novel apparent permeability model for shale that incorporates the impact of real gas effect, end effects, transport regimes, adsorption, and effective stress. First, we assumed the channel for shale gas transport to be circular pore and calculated the viscosity under the influence of a real gas effect as well as the corresponding Knudsen number. Subsequently, building upon the foundation of the slip model, we introduce the influence of the end effects to establish a bulk phase permeability for shale, further considering the impact of surface diffusion. Then, the pore radius was quantified under the influences of adsorption and effective stress. Using the intrinsic correlation between permeability and pore radius as a bridge, a shale apparent permeability model was further derived. The model encompasses various transport regimes and microscale effects, replicating the gas flow behaviors in shale. The new model was verified through comparison with published experimental data and other theoretical models, while analyzing the evolution of apparent permeability. Additionally, this paper discusses the influence of various factors, including end effects, pore radius, internal swelling coefficient, sorption-induced strain, and model-related parameters on the shale apparent permeability.

Funder

National Natural Science Foundation of China

Publisher

AIP Publishing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3