Comparative analysis of mechanical wall shear stress and hemodynamics to study the influence of asymmetry in abdominal aortic aneurysm and descending thoracic aortic aneurysm

Author:

Rehman M. Abaid Ur12ORCID,Ekici Özgür2ORCID

Affiliation:

1. Department of Mathematics, School of Natural Sciences (SNS), National University of Sciences and Technology (NUST) 1 , Sector H-12, 44000 Islamabad, Pakistan

2. Department of Mechanical Engineering, Hacettepe University 2 , 06800 Beytepe, Ankara, Turkey

Abstract

An aneurysm's rupture is commonly associated with its maximum diameter, yet biomechanical studies emphasize the significant influence of mechanical wall shear stress (WSS) in this process. This study focuses on two models of aortic aneurysms: abdominal aortic aneurysm and descending thoracic aortic aneurysm. Five cases, comprising two for model 1 and three for model 2, are examined to explore both axisymmetric and asymmetric shapes, as patient geometry may manifest as either fusiform (axisymmetric) or saccular (asymmetric), while maintaining a consistent aneurysm diameter and adjusting the bulge shape factor to induce asymmetry. Hemodynamic factors, including WSS and wall shear stress gradient, are computed to evaluate thrombus formation and rupture risk within the aneurysms. Our results indicate the presence of recirculation zones in both the medial and transverse planes, generating vortices within the aneurysm. These vortices are more prominent in asymmetric cases compared to axisymmetric cases, leading to increased blood residence time within the aneurysm and a higher likelihood of thrombus formation. Thrombus formation can further impede blood flow, heightening the risk of embolism or ischemic events. Rupture occurs when the WSS surpasses tissue strength; thus, if the tissue strength of all aneurysms is same, our findings suggest that rupture risk varies according to asymmetry. In the transverse direction, our results demonstrate that in model 1, case 1 exhibits uniform WSS on both sides, while in case 2, WSS is higher at the posterior sides of the aneurysm sac. Conversely, in model 2, WSS is higher at the anterior side of the aneurysm. In the medial direction of the aneurysm, WSS is highest for case 5, followed by case 3, case 4, case 2, and case 1, respectively, indicating elevated WSS when the anterior bulge dominates over the posterior bulge for each model. Overall, a higher rupture risk is observed in model 2 compared to model 1 due to increased mechanical stresses.

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3