Thermal modeling of porous medium integrated in PCM and its application in passive thermal management of electric vehicle battery pack

Author:

Al-Masri Ali1,Khanafer Khalil2ORCID,Vafai Kambiz3ORCID

Affiliation:

1. Scientific Research Center, Australian University 1 , West Mishref, Kuwait

2. Mechanical Engineering, College of Innovation and Technology, University of Michigan 2 , Flint, Michigan 48502, USA

3. Mechanical Engineering Department, University of California 3 , Riverside, California 92521, USA

Abstract

The integration of a composite of porous medium with phase change material (PCM) offers significant advantages in thermal management systems, enhancing heat transfer efficiency and addressing various thermal regulation challenges. This approach utilizes the PCM's latent heat absorption and the enhanced thermal conductivity provided by the porous medium, resulting in optimized system performance. Its applicability spans across electronics cooling and building insulation systems. However, predicting the thermal behavior of this composite material is challenging, necessitating computational tools to anticipate its response under different conditions and evaluate its influence on cooling strategies. The objective of this study is to create a computational tool specifically tailored to evaluate constitutive parameters of this composite material, thereby providing a comprehensive description of its thermal behavior. To achieve this goal, the multiscale homogenization principle is employed to assess the composite's effective thermophysical material properties using the representative volume element approach. The repeating unit cell of the aluminum lattice is incorporated into the PCM to define a representative volume element. The finite element method (FEM) is utilized to solve the three-dimensional homogenization problem, yielding an orthotropic effective thermal conductivity due to the inherent symmetry of the repeating material cell. Moreover, the study leverages the apparent heat capacity method to effectively manage the phase transitions within the PCM domain, utilizing smooth and temperature-dependent functions to accurately describe the thermophysical properties of the PCM. Integrating the composite into battery pack thermal management, this study thoroughly examines thermal dynamics by comparing outcomes with and without PCM integration. The transient thermal problem is accurately tackled using the FEM, employing the evaluated effective constitutive parameters of the homogenized composite to minimize computational effort. The results indicate a notable decline in the highest temperatures of the battery pack, leading to a reduction of about 14 °C at the specific moment when the phase change material fully transitions into its liquid form. The obtained results emphasize the effectiveness and practical feasibility of the proposed thermal management strategy. The modeling approach presented provides a robust tool with significant efficiency in reducing computational time for analyzing the thermal behavior of large models, as the utilization of the homogenization technique notably decreases the computational time.

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3