Affiliation:
1. Department of Physics and Institute of Advanced Materials, Hong Kong Baptist University, Waterloo Road, Kowloon Tong, Hong Kong, People's Republic of China
Abstract
Ternary strategy is one of the most commonly used methods to boost the performance of organic solar cells (OSCs) from a binary blend of donor and acceptor. Fullerene derivatives are popular choices for the ternary component as they could benefit the electrical property. However, the ternary component could also affect other physical properties of the bulk-heterojunction (BHJ). Among these properties, heat transfer has rarely been reported, despite its relevance for thermal durability of OSCs. Here, we employ scanning photothermal deflection technique to study thermal diffusion properties of binary PM6:Y7 and ternary PM6:Y7:X BHJs, where X = PC71BM, ICBA, and N2200. It is found that fullerene derivatives deteriorate the thermal diffusivity ( D) of blend films and the device thermal durability, despite enhancing the electrical and device performance. In contrast, when an n-type conjugated polymer N2200 is used as the ternary component, both the electrical and thermal properties are enhanced, with improved power conversion efficiency and prolonged device thermal durability. These results offer a perspective on how to choose a favorable third component. Fullerene derivatives are not necessarily the optimal choice for ternary component for BHJ cells because of the inferior thermal properties.
Funder
Research Grants Council, University Grants Committee
Subject
Physics and Astronomy (miscellaneous)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献