The influence of particle size on the fluid dynamics of a laser-induced plasma

Author:

Miller Clayton J.1,Wainwright Elliot R.2ORCID,Gottfried Jennifer L.2ORCID,Abraham Joseph3,Wei Liang3ORCID,Pantoya Michelle L.1ORCID

Affiliation:

1. Mechanical Engineering Department, Texas Tech University, Lubbock, Texas 79409, USA

2. U.S. Army Combat Capabilities Development Command (DEVCOM) Army Research Laboratory, Aberdeen Proving Ground, Maryland 21005, USA

3. Karagozian & Case, Inc., Glendale, California 91203, USA

Abstract

The interaction of a laser-induced shock wave with nanoparticles and microparticles of aluminum oxide is investigated through experiments and modeling. The chemistry and physics of the interaction between the particles and plasma generated from laser ablation shows similarities and discrete differences for the two particle sizes. For both particle sizes, early stage (<10 μs) ionization was dominant and evidenced by higher concentrations of Al II. While both sizes exhibit ionization over the same duration, the intensity of emission was greater for nanoparticles indicating greater concentrations of ionized species. Moreover, the dispersion of species was notably more elongated for microparticles while radial dispersion was more pronounced for nanoparticles with elevated drag forces. At later stages (i.e., >10 μs), oxidation reactions were dominant for both particle sizes, but the same distinctions in flow field were observed and attributed to particle drag. In all stages of interaction, microparticles expand axially with less drag that suppresses their radial expansion. As a result, the dispersion of reactive species was mapped over an up to 80% larger area for nanoparticles relative to microparticles. Results shown here can be applied toward advancing experimental diagnostics and particle-shock wave modeling and simulation efforts for energetic materials.

Funder

Army Research Office

Office of Naval Research

U.S. Department of Energy

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3