Ultra-short-term wind power forecasting method based on multi-variable joint extraction of spatial-temporal features

Author:

Lei Zhengling1ORCID,Wang Caiyan1ORCID,Liu Tao2ORCID,Wang Fang1,Xu Jingxiang1ORCID,Yao Guoquan3

Affiliation:

1. Shanghai Engineering Research Center of Marine Renewable Energy, College of Engineering Science and Technology, Shanghai Ocean University 1 , Shanghai 201306, China

2. College of Transport & Communications, Shanghai Maritime University 2 , Shanghai 200135, China

3. Key Laboratory of High Performance Ship Technology, Wuhan University of Technology, Ministry of Education 3 , Wuhan 430070, China

Abstract

Accurate and reliable wind power forecasting is imperative for wind power stations' stable and efficient operation. Information such as wind speed and wind direction in the same wind field has spatial-temporal differences. Considering the spatial-temporal changes in wind fields can improve model prediction accuracy. However, existing methods suffer from limited ability to capture correlation features among variables, information loss in spatial-temporal feature extraction, and neglect short-term temporal features. This paper introduces a novel ultra-short-term wind power forecasting method based on the combination of a deep separable convolutional neural network (DSCNN) and long- and short-term time-series network (LSTNet), incorporating maximum information coefficient (MIC) to realize multi-variable joint extraction of spatial-temporal features. The method utilizes MIC to jointly analyze and process the multi-variate variables before spatial-temporal feature extraction to avoid information redundancy. The spatial features between input variables and wind power are extracted by deep convolution and pointwise convolution in DSCNN. Then, a convolutional neural network and gated recurrent unit in LSTNet are combined to capture long-term and short-term temporal features. In addition, an autoregressive module is employed to accept features extracted by MIC to enhance the model's learning of temporal features. Based on real datasets, the performance of models is validated through comprehensive evaluation experiments such as comparison experiments, ablation experiments, and interval prediction methods. The results show that the proposed method reduces mean absolute error by up to 4.66% and provides more accurate prediction intervals, verifying the accuracy and effectiveness of the proposed method.

Funder

National Natural Science Foundation of China

open fund of key laboratory of high performance ship technolog

Science and Technology Commission of Shanghai Municipality

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3