On the internal velocity structure of sub-aqueous, gravity-driven granular flow: Measurements using MHz frequency sound

Author:

Hare Jenna1ORCID,Hay Alex E.1ORCID

Affiliation:

1. Department of Oceanography, Dalhousie University , Halifax, Nova Scotia B3H 4R2, Canada

Abstract

The vertical structure of downslope velocity within sub-aqueous gravity-driven flows of (smoother) glass beads and (rougher) natural sand is investigated for both fixed roughness and erodible beds using high-resolution, MHz-frequency acoustics. The observed velocity profiles within the O(1) cm thick, O(10) cm/s flows exhibit a negative shear layer extending downward from the sediment–water interface to a velocity maximum at ∼ 9 grain diameters depth within the layer, below which the velocities decrease to near-zero values at the pre-flow bed location for fixed roughness beds and to non-zero values for mobile beds. The attenuation of sound transmitted through the moving layer is used to constrain the depth-averaged solids concentration to a value of ∼ 0.52. The observed negative shear at the interface indicates that, unlike the sub-aerial case, interfacial friction is dynamically important in gravity-driven sub-aqueous granular flows. It is shown that the observed vertical structure of velocity within the layer can be well represented by continuum viscous flow models. Solids concentration and effective viscosity are estimated from the best-fit model parameters using the Zarraga–Hill–Leighton (2000) empirical relation for suspensions of negatively buoyant particles, yielding vertically averaged values ∼ 0.57. While the sub-millimeter vertical resolution of the measurements is too coarse to provide precise estimates of the friction velocity at the interface, the model-data comparisons nevertheless indicate that the vertical structure of the downslope flow consists of a weakly stratified dense layer and a thin, dilute transition layer between the dense flow and the overlying water.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3