Vacuum deposited organic solar cells with BTIC-H as A–D–A non-fullerene acceptor

Author:

Habib Irfan1ORCID,Kaienburg Pascal1ORCID,Xia Dondong2ORCID,Gough Olivia1ORCID,Zhu Ming1ORCID,Spruce Joseph1ORCID,Li Weiwei3ORCID,Riede Moritz1ORCID

Affiliation:

1. Clarendon Laboratory, Department of Physics, University of Oxford 1 , Oxford OX1 3PU, United Kingdom

2. Institute of Applied Chemistry, Jiangxi Academy of Sciences 2 , Nanchang 330096, People’s Republic of China

3. Beijing Advanced Innovation Center for Soft Matter Science and Engineering and State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology 3 , Beijing 100029, People’s Republic of China

Abstract

The record power conversion efficiency of solution-processed organic solar cells (OSCs) has almost doubled since non-fullerene acceptors (NFAs) replaced fullerene derivatives as the best-performing acceptor molecules. The successful transition from C60 to NFAs is still pending for vacuum-thermal evaporated (VTE) OSCs, not least because most NFAs are too large to be evaporated without breaking. Due to VTE’s relevance in terms of industrial manufacturing, discovering high-performing VTE NFAs is a major opportunity for OSCs. Here, we fabricate evaporated OSCs based on the NFA BTIC-H known from solution processing. This A–D–A molecule has an unfused bithiophene core, 1,1-dicyanomethylene-3-indanone end groups, and hexyl side chains, making it small enough to be evaporated well. We pair BTIC-H with four commonly used evaporated donors—DCV5T-Me(3,3), DTDCPB, HB194, and SubNc—in planar heterojunctions. We observe appreciable photocurrents and a voltage loss of ∼0.8 V, matching that of corresponding C60 devices. Donor:BTIC-H bulk heterojunctions likely face charge collection issues due to unfavorable microstructure. Our work demonstrates one of few NFA based evaporated OSCs with encouraging performance results and gives one potential starting point for molecule design of further NFAs suitable for VTE.

Funder

Engineering and Physical Sciences Research Council

Wolfson Foundation

Department of Physics, University of Oxford

Wolfson College, University of Oxford

Ernest Oppenheimer Memorial Trust

Firstrand Foundation

Publisher

AIP Publishing

Subject

General Engineering,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3