Effect of argon flow rate and direct current bias on the growth of boron nitride coating in low-temperature plasma

Author:

Chakrabarty Kallol1ORCID,Baker Paul A.1ORCID,Vijayan Vineeth M.1ORCID,Catledge Shane A.1ORCID

Affiliation:

1. Department of Physics, The University of Alabama at Birmingham, Birmingham, Alabama 35294, USA

Abstract

A microwave plasma chemical vapor deposition system was used to synthesize cubic boron nitride (cBN) coatings on diamond seeded silicon substrates using direct current (DC) bias. Effects of the argon (Ar) flow rate and bias voltage on the growth of the cBN coatings were investigated. Hydrogen (H2), argon (Ar), a mixture of diborane in H2 (95% H2, 5% B2H6), and N2 were used in the feed gas. A DC bias system was used for external biasing of the sample, which facilitates the goal of achieving sp3 bonded cBN. Fourier Transform Infrared Spectroscopy (FTIR) and X-ray Photoelectron Spectroscopy (XPS) revealed the existence of sp3-bonded BN in the produced samples. With increasing Ar flow, the cBN content in the coating increases and reaches a maximum at the maximum Ar flow of 400 SCCM used in this study. High-resolution XPS scans for B1s and N1s indicate that the deposited coating contains more than 70% cBN. This study demonstrates that energetic argon ions generated in a microwave-induced plasma significantly increase cBN content in the coating.

Funder

National Science Foundation

Alabama Graduate Research Scholars Programfunded through the Alabama Commission for higher eduction and administered by the Alabama EPSCoR

Publisher

AIP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3