Reconstructing in-depth activity for chaotic 3D spatiotemporal excitable media models based on surface data

Author:

Stenger R.12ORCID,Herzog S.134ORCID,Kottlarz I.12ORCID,Rüchardt B.14ORCID,Luther S.145,Wörgötter F.3ORCID,Parlitz U.124ORCID

Affiliation:

1. Max Planck Institute for Dynamics and Self-Organization 1 , Am Fassberg 17, 37077 Göttingen, Germany

2. Institute for the Dynamics of Complex Systems, University of Göttingen 2 , Friedrich-Hund-Platz 1, 37077 Göttingen, Germany

3. Department for Computational Neuroscience, Third Institute of Physics—Biophysics, University of Göttingen 3 , 37077 Göttingen, Germany

4. German Center for Cardiovascular Research (DZHK), partner site Göttingen 4 , Robert-Koch-Str. 42a, 37075 Göttingen, Germany

5. Institute of Pharmacology and Toxicology, University Medical Center Göttingen 5 , Robert-Koch-Str. 40, 37075 Göttingen, Germany

Abstract

Motivated by potential applications in cardiac research, we consider the task of reconstructing the dynamics within a spatiotemporal chaotic 3D excitable medium from partial observations at the surface. Three artificial neural network methods (a spatiotemporal convolutional long-short-term-memory, an autoencoder, and a diffusion model based on the U-Net architecture) are trained to predict the dynamics in deeper layers of a cube from observational data at the surface using data generated by the Barkley model on a 3D domain. The results show that despite the high-dimensional chaotic dynamics of this system, such cross-prediction is possible, but non-trivial and as expected, its quality decreases with increasing prediction depth.

Funder

Göttinger Graduiertenschule für Neurowissenschaften, Biophysik und Molekulare Biowissenschaften

Deutsches Zentrum für Herz-Kreislaufforschung

Max Plank Society

Publisher

AIP Publishing

Subject

Applied Mathematics,General Physics and Astronomy,Mathematical Physics,Statistical and Nonlinear Physics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Basin entropy as an indicator of a bifurcation in a time-delayed system;Chaos: An Interdisciplinary Journal of Nonlinear Science;2024-05-01

2. Adaptive integral alternating minimization method for robust learning of nonlinear dynamical systems from highly corrupted data;Chaos: An Interdisciplinary Journal of Nonlinear Science;2023-12-01

3. Reconstructing cardiac electrical excitations from optical mapping recordings;Chaos: An Interdisciplinary Journal of Nonlinear Science;2023-09-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3