A model of heterogeneous undercooled liquid and glass accounting for temperature-dependent nonexponentiality and enthalpy fluctuation

Author:

Takeda Wataru1ORCID,Lucas Pierre1ORCID

Affiliation:

1. Department of Materials Science and Engineering, University of Arizona , Tucson, Arizona 85712, USA

Abstract

Dynamic heterogeneity is a fundamental characteristic of glasses and undercooled liquids. The heterogeneous nature causes some of the key features of systems’ dynamics such as the temperature dependence of nonexponentiality and spatial enthalpy fluctuations. Commonly used phenomenological models such as Tool–Narayanaswamy–Moynihan (TNM) and Kovacs–Aklonis–Hutchinson–Ramos fail to fully capture this phenomenon. Here we propose a model that can predict the temperature-dependent nonexponential behavior observed in glass-forming liquids and glasses by fitting standard differential scanning calorimetry curves. This model extends the TNM framework of structural relaxation by introducing a distribution of equilibrium fictive temperature (Tfe) that accounts for heterogeneity in the undercooled liquid. This distribution is then frozen at the glass transition to account for the heterogeneous nature of the glass dynamics. The nonexponentiality parameter βKWW is obtained as a function of temperature by fitting the Kohlrauch-Williams-Watts (KWW) equation to the calculated relaxation function for various organic and inorganic undercooled liquids and glasses. The calculated temperature dependent βKWW shows good agreement with the experimental ones. We successfully model the relaxation dynamics far from equilibrium for two silicate systems that the TNM model fails to describe, confirming that temperature dependent nonexponentiality is necessary to fully describe these dynamics. The model also simulates the fluctuation of fictive temperature δTf during isothermal annealing with good qualitative agreement with the evolution of enthalpy fluctuation reported in the literature. We find that the evolution of enthalpy fluctuation during isothermal annealing heavily depends on the cooling rate, a dependence that was not previously emphasized.

Funder

NSF DMR

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3