Affiliation:
1. Department of Physics, Astronomy and Materials Science, Missouri State University 1 , Springfield, Missouri 65897, USA
2. University of Arkansas 2 , Fayetteville, Arkansas 72701, USA
Abstract
Bimagnetic nanoparticles show promise for applications in energy efficient magnetic storage media and magnetic device applications. The magnetic properties, including the exchange bias of nanostructured materials can be tuned by variation of the size, composition, and morphology of the core vs overlayer of the nanoparticles (NPs). The purpose of this study is to investigate the optimal synthesis routes, structure and magnetic properties of novel CoO/NiFe2O4 heterostructured nanocrystals (HNCs). In this work, we aim to examine how the size impacts the exchange bias, coercivity and other magnetic properties of the CoO/NiFe2O4 HNCs. The nanoparticles with sizes ranging from 10 nm to 24 nm were formed by synthesis of an antiferromagnetic (AFM) CoO core and deposition of a ferrimagnetic (FiM) NiFe2O4 overlayer. A highly crystalline magnetic phase is more likely to occur when the morphology of the core-overgrowth is present, which enhances the coupling at the AFM-FiM interface. The CoO core NPs are prepared using thermal decomposition of Co(OH)2 at 600 °C for 2 hours in a pure argon atmosphere, whereas the HNCs are obtained first using thermal evaporation followed by hydrothermal synthesis. The structural and morphological characterization made using X-ray diffraction (XRD), high-resolution transmission electron microscopy (HR-TEM), and scanning electron microscopy (SEM) techniques verifies that the HNCs are comprised of a CoO core and a NiFe2O4 overgrowth phase. Rietveld refinement of the XRD data shows that the CoO core has the rocksalt (Fd3 m) crystal structure and the NiFe2O4 overgrowth has the spinel (C12/m1) crystal structure. SEM-EDS data indicates the presence and uniform distribution of Co, Ni and Fe in the HNCs. The results from PPMS magnetization measurements of the CoO/NiFe2O4 HNCs are discussed herein.
Subject
General Physics and Astronomy
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献