Abstract
Liquid viscosity has a potential effect on bubble dynamics. This paper is concerned with bubble dynamics in a compressible viscous liquid near the free surface. The liquid–gas flow is modeled using the Eulerian finite element method coupled with the volume of fluid method. The numerical results have been shown to be in excellent agreement with those from the spherical bubble theory and experiment. Parametric studies are carried out regarding the Reynolds number Re and the stand-off parameter γd. It clearly demonstrated that the liquid viscosity inhibits bubble pulsation, jet flow, free surface jet, and bubble splitting. Quantitatively, as Reynolds number Re decreases, the maximum bubble volume, jet tip velocity, free surface spike, and crown height decrease, and the toroidal bubble splitting weakens. As the stand-off parameter γd increases, the maximum bubble volume, jet velocity, and bubble average pressure peak increase while the height of the free surface spike decreases. Close observation reveals that the free surface crown tends to disappear at small Re or large γd, further indicating the complex mechanism behind the crown spike evolution.
Funder
Finance Science and Technology Project of Hainan Province
National Natural Science Foundation of China
Natural Science Foundation of Heilongjiang Province
Development Programof China
Subject
Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献