“Return to equilibrium” anisotropy model for non-equilibrium Reynolds stress closures

Author:

Brereton G. J.1ORCID

Affiliation:

1. Department of Mechanical Engineering, Michigan State University , East Lansing, Michigan 48824-1226, USA

Abstract

A long-standing question in the Reynolds-averaged modeling of turbulent flow is how to predict accurately flows with temporal or spatial unsteadiness. In this paper, we present a “return to equilibrium” approach to modeling the unsteady Reynolds stress anisotropy bij in terms of differential transport equations, the solutions to which are constrained by algebraic closures for bij in flows at equilibrium and by the corresponding rapid-distortion-theory solutions for flows far from equilibrium. When coupled with scale equations for the turbulent kinetic energy and the dissipation rate, these anisotropy evolution equations comprise a complete closure scheme for which no additional model coefficients are required. Evaluations of this closure scheme, in which two different existing equilibrium algebraic models for bij were employed, were carried out for homogeneous turbulence in flows with a step imposition of shear, with continuously oscillatory shear at different frequencies and with a prescribed time-dependent plane-strain rate. Good agreement was achieved between model predictions and experimental/simulation target data in all test cases, with either Girimaji's bij model or a structure-based bij model used as the equilibrium algebraic closure.

Funder

Office of Naval Research

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3