Effect of phase transition on the piezoelectric properties of scandium-alloyed gallium nitride

Author:

Hirata Kenji1ORCID,Ikemoto Yu2ORCID,Uehara Masato12ORCID,Yamada Hiroshi12ORCID,Anggraini Sri Ayu1ORCID,Akiyama Morito1ORCID

Affiliation:

1. National Institute of Advanced Industrial Science and Technology (AIST), Sensing System Research Center 1 , Shuku 807-1, Tosu, Saga 841-0052, Japan

2. Department of Molecular and Material Sciences, Interdisciplinary Graduate School of Engineering Sciences, Kyushu University 2 , 6-1, Kasugakoen, Kasuga, Fukuoka 816-8580, Japan

Abstract

In this study, the piezoelectric properties of scandium-alloyed gallium nitride (ScGaN), which is expected to be applied to microelectromechanical systems devices, are evaluated by first-principles calculations. The piezoelectric constant (d33) of GaN is found to increase by up to approximately 30 times upon the addition of 62.5 mol. % of Sc. The piezoelectric stress constant (e33) increases and the elastic constant (C33) decreases with increasing Sc content of ScGaN, driving the rise of d33. The improved piezoelectric properties of ScGaN compared with those of GaN are largely attributed to elastic softening, which is thought to be related to the transition from a wurtzite to hexagonal boron nitride (h-BN) structure driven by the change in bonding states between atoms caused by the addition of Sc to GaN. The crystal orbital Hamilton population analysis suggests that addition of Sc to GaN results in the combination of weaker Sc–N and Ga–N bonding, which makes the crystal structure unstable. This weakened bonding is thought to be the main cause of the destabilization of the wurtzite structure and transition to the h-BN structure of ScGaN. The elastic softening associated with this structural transition leads to the dramatic improvement in piezoelectric properties.

Funder

Japan Society for the Promotion of Science London

Publisher

AIP Publishing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3