MXene enhanced reduced graphene oxide aerogel for high-performance supercapacitors

Author:

Wang Zhenjiang1,Yang Xinli1,Wang Gang1ORCID,Yang Xiping1,Qiao Longhao1,Lu Mingxia1

Affiliation:

1. School of Chemistry and Chemical Engineering, Henan University of Technology , Zhengzhou 450001, People’s Republic of China

Abstract

Three-dimensional (3D) reduced graphene oxide (rGO)/Ti2CTx MXene hybrid aerogels were effectively prepared by a two-step method involving hydrothermal reaction and freeze-drying. The intimately coupled rGO/Ti2CTx hybrid aerogel combined high electrical conductivity, large interlayer spacing, and excellent mechanical stability of Ti2CTx, which not only effectively prevents the self-restacking of Ti2CTx nanosheets, exposes more active sites exposed, and improves the volume change during the charge/discharge process but also increases the accessibility of ions and promotes the rapid transfer of ions/electrons. As a result, rGO/Ti2CTx 17.5–2.5 as the working electrode of electric double layer capacitors delivers a large specific capacity (107.05 F g−1 at 0.5 A g−1 in a 1M Na2SO4 electrolyte), a high rate capability (maintains 30% of its initial capacitance at 10 A g−1, which is much better than rGO and Ti2CTx), and excellent long-term large-current cycle stability (the initial capacitance remains above 71.1% after 10 000 cycles at 1 A g−1). In addition to providing a high-performance electrode for supercapacitors, this study proposes an efficient and time-saving strategy for constructing 3D structures from 2D materials.

Funder

National Natural Science Foundation of China-Henan Joint Fund

Colleges and Universities Key Research of Henan Province

Young Backbone Teachers Training Program Foundation of Henan University of Technology

Science and Technology of Foundation of Henan Province

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3