Portable FBAR based E-nose for cold chain real-time bananas shelf time detection

Author:

Wu Chen1ORCID,Li Jiuyan12ORCID

Affiliation:

1. Frontier Science Center for Smart Materials, College of Chemical Engineering, Dalian University of Technology 1 , Dalian 116024, China

2. Shandong Laboratory of Yantai Advanced Materials and Green Manufacturing, Yantai Economic and Technological Development Zone 2 , 300 Changjiang Road, Yantai, China

Abstract

Being cheap, nondestructive, and easy to use, gas sensors play important roles in the food industry. However, most gas sensors are suitable more for laboratory-quality fast testing rather than for cold-chain continuous and cumulative testing. Also, an ideal electronic nose (E-nose) in a cold chain should be stable to its surroundings and remain highly accurate and portable. In this work, a portable film bulk acoustic resonator (FBAR)-based E-nose was built for real-time measurement of banana shelf time. The sensor chamber to contain the portable circuit of the E-nose is as small as a smartphone, and by introducing an air-tight FBAR as a reference, the E-nose can avoid most of the drift caused by surroundings. With the help of porous layer by layer (LBL) coating of the FBAR, the sensitivity of the E-nose is 5 ppm to ethylene and 0.5 ppm to isoamyl acetate and isoamyl butyrate, while the detection range is large enough to cover a relative humidity of 0.8. In this regard, the E-nose can easily discriminate between yellow bananas with green necks and entirely yellow bananas while allowing the bananas to maintain their biological activities in their normal storage state, thereby showing the possibility of real-time shelf time detection. This portable FBAR-based E-nose has a large testing scale, high sensitivity, good humidity tolerance, and low frequency drift to its surroundings, thereby meeting the needs of cold-chain usage.

Publisher

AIP Publishing

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering,Instrumentation

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3