Out-of-time ordered correlators in kicked coupled tops: Information scrambling in mixed phase space and the role of conserved quantities

Author:

Varikuti Naga Dileep12ORCID,Madhok Vaibhav12ORCID

Affiliation:

1. Department of Physics, Indian Institute of Technology Madras , Chennai 600036, India and , Chennai 600036, India

2. Center for Quantum Information, Communication and Computing (CQuICC), Indian Institute of Technology Madras , Chennai 600036, India and , Chennai 600036, India

Abstract

We study operator growth in a bipartite kicked coupled tops (KCTs) system using out-of-time ordered correlators (OTOCs), which quantify “information scrambling” due to chaotic dynamics and serve as a quantum analog of classical Lyapunov exponents. In the KCT system, chaos arises from the hyper-fine coupling between the spins. Due to a conservation law, the system’s dynamics decompose into distinct invariant subspaces. Focusing initially on the largest subspace, we numerically verify that the OTOC growth rate aligns well with the classical Lyapunov exponent for fully chaotic dynamics. While previous studies have largely focused on scrambling in fully chaotic dynamics, works on mixed-phase space scrambling are sparse. We explore scrambling behavior in both mixed-phase space and globally chaotic dynamics. In the mixed-phase space, we use Percival’s conjecture to partition the eigenstates of the Floquet map into “regular” and “chaotic.” Using these states as the initial states, we examine how their mean phase space locations affect the growth and saturation of the OTOCs. Beyond the largest subspace, we study the OTOCs across the entire system, including all other smaller subspaces. For certain initial operators, we analytically derive the OTOC saturation using random matrix theory (RMT). When the initial operators are chosen randomly from the unitarily invariant random matrix ensembles, the averaged OTOC relates to the linear entanglement entropy of the Floquet operator, as found in earlier works. For the diagonal Gaussian initial operators, we provide a simple expression for the OTOC.

Funder

Science and Engineering Research Board

Department of Science and Technology, Ministry of Science and Technology, India

Publisher

AIP Publishing

Reference95 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3