Predicted thermophysical properties of UN, PuN, and (U,Pu)N

Author:

Galvin C. O. T.12ORCID,Kuganathan N.1ORCID,Barron N. J.3ORCID,Grimes R. W.2ORCID

Affiliation:

1. Materials Science and Technology Division, Los Alamos National Laboratory 1 , Los Alamos, New Mexico 87545, USA

2. Department of Materials, Imperial College London 2 , London SW7 2AZ, United Kingdom

3. National Nuclear Laboratory Limited, Central Laboratory 3 , Sellafield CA20 1PG, United Kingdom

Abstract

Molecular dynamics and density functional theory simulations are used to predict the lattice and electronic contributions of thermophysical properties for UN, PuN, and mixed (U,Pu)N systems. The properties predicted include the lattice parameter, linear thermal expansion, enthalpy, and specific heat capacity, as a function of temperature. The simulation predictions for high temperature specific heat capacity are compared against experimental measurements to understand the behavior, and why differences in the experimental measurements are observed. The influence of adding U vacancies, N interstitials, and Pu to UN is also examined. For this, a new PuN potential parameter set is developed and used with the Kocevski UN potential, enabling the dynamics of mixed (U,Pu)N systems to be studied. How defects impact the thermophysical properties is important for understanding fuel behavior under different reactor conditions, and these mechanistic predictions can be used to support fuel performance codes where data is scarce.

Funder

Department for Business, Energy and Industrial Strategy, UK Government

Publisher

AIP Publishing

Reference65 articles.

1. An evaluation of plutonium compounds as nuclear fuels;Nucl. Met., Met. Soc. AIME,1964

2. A new, low-temperature synthesis of plutonium and uranium nitrides;Nucl. Technol.,1975

3. Investigation of irradiated uranium-plutonium carbonitride fuel by microprobe analysis;Nucl. Technol.,1978

4. Fabrication and testing of uranium nitride fuel for space power reactors;J. Nucl. Mater.,1988

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Assessment of uranium nitride interatomic potentials;Journal of Nuclear Materials;2024-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3