One-dimensional, multi-fluid model of the plasma-wall transition. II. Negative ions

Author:

Gyergyek T.12ORCID,Kos L.3ORCID,Dimitrova M.45ORCID,Costea S.3ORCID,Kovačič J.3ORCID

Affiliation:

1. 1 University of Ljubljana, Faculty of Electrical Engineering, Tržaška 25, 1000 Ljubljana, Slovenia

2. Jožef Stefan Institute 2 , Jamova 39, POB 100, 1000 Ljubljana, Slovenia

3. 3 University of Ljubljana, Faculty of Mechanical Engineering, Aškerčeva 6, 1000 Ljubljana, Slovenia

4. Institute of Plasma Physics of the Czech Academy of Sciences 4 , Za Slovankou 3, 18200 Prague 8, Czech Republic

5. Emil Djakov Institute of Electronics, Bulgarian Academy of Sciences 5 , 72, Tsarigradsko Chaussee Blvd., 1784 Sofia, Bulgaria

Abstract

The plasma-wall transition is investigated by a one-dimensional steady-state multifluid model, which was presented in detail in Part I [T. Gyergyek et al., AIP Adv. 14, 045201 (2024)]. In this work, the plasma-wall transition is analyzed for the case where the plasma consists of singly charged positive ions, electrons, and singly charged negative ions. When the temperature and initial density of the negative ions are varied, a transition between two types of solutions of the model is observed. We call them the low and high solution, with respect to the absolute value of the potential drop. When the density and temperature of the negative ions are above a critical value, the low solution is observed. As the mass of the positive ions increases, these critical values also increase, but only until the ion mass is below about 1000 electron masses. With larger ion masses, the critical density of the negative ions and the temperature no longer change. In the low solution, the potential drop in front of the sheath is determined by the negative ions and is smaller in absolute terms than in the case of the high solution, where the potential drop in front of the sheath is determined by the electrons. If the problem is analyzed on the pre-sheath scale, the transition between the low and high solution is very sharp. However, when the neutrality condition is replaced by the Poisson equation, this transition becomes blurred and the solutions of the model equations exhibit oscillations. The role of the smallness parameter is highlighted. It is shown how the initial electric field is determined. Deviation of the negative ion density profile from the Boltzmann relation is discussed.

Funder

Javna Agencija za Raziskovalno Dejavnost RS

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3