Hydrokinetic energy conversion: A global riverine perspective

Author:

Ridgill Michael1ORCID,Lewis Matt J.1ORCID,Robins Peter E.1ORCID,Patil Sopan D.2ORCID,Neill Simon P.1ORCID

Affiliation:

1. School of Ocean Sciences, Bangor University, Menai Bridge LL59 5AB, United Kingdom

2. School of Natural Sciences, Bangor University, Bangor LL57 2UW, United Kingdom

Abstract

Free-flowing rivers have been impacted by anthropogenic activity and extensive hydropower development. Despite this, many opportunities exist for context-specific energy extraction, at locations deemed undesirable for conventional hydropower plants, in ways that reduce the scale of operation and impact. Hydrokinetic energy conversion is a renewable energy technology that requires accurate resource assessment to support deployment in rivers. We use global-scale modeled river discharge data, combined with a high-resolution vectorized representation of river networks, to estimate channel form, flow velocities, and, hence, global hydrokinetic potential. Our approach is based directly on the transfer of kinetic energy through the river network, rather than conventional, yet less realistic, assessments that are based on conversion from gravitational potential energy. We show that this new approach provides a more accurate global distribution of the hydrokinetic resource, highlighting the importance of the lower-courses of major rivers. The resource is shown to have great potential on the continents of South America, Asia, and Africa. We calculate that the mean hydrokinetic energy of global rivers (excluding Greenland and Antarctica) is 5.911 ± 0.009 PJ (1.642 ± 0.003 TWh).

Funder

European Social Fund

European Regional Development Fund

Publisher

AIP Publishing

Subject

Renewable Energy, Sustainability and the Environment

Reference77 articles.

1. Riverine hydrokinetic resource assessment. A case study of a lowland river in Lithuania

2. River current energy conversion systems: Progress, prospects and challenges

3. IRENA, “ Renewable capacity statistics 2019,” Technical Report ( International Renewable Energy Agency (IRENA), 2019).

4. IEA, “ Renewables information: Overview,” Technical Report ( Paris: IEA/OECD, 2020).

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3