Advanced orthogonal frequency and phase modulated waveform for contrast-enhanced photothermal wave radar thermography

Author:

Luo Zhi-Tao1ORCID,Shen Peng1,Luo Hao1,Wang Sheng1ORCID,Wu Xin-Kai1,Zhang Hui1ORCID

Affiliation:

1. Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing 211189, China

Abstract

Thermal wave radar (TWR) thermography is a high-efficient nondestructive testing technique to increase the signal-to-noise ratio (SNR) and to enhance target detection capability. However, the detection of subsurface defects, especially small-size defects, usually requires a distinctively high SNR and depth resolvability. This paper proposed an orthogonal phase-coded linear frequency modulated (OPCLFM) excitation waveform, which has significantly improved the SNR and depth resolvability of TWR compared to the LFM waveform. The pulse compression quality of the OPCLFM waveform was initially evaluated through a 1D thermal wave analytical model of carbon fiber reinforced polymer (CFRP) laminate. Results show that the OPCLFM waveform combined with the Kaiser window function compresses the largest sidelobe at least by 18.39 dB compared to the LFM waveform. Furthermore, the superior depth resolvability performance of the OPCLFM waveform was also validated by 3D finite element simulation. Finally, the effect of thermal conductivity on the depth resolvability performance of the OPCLFM waveform was evaluated quantitatively by a delaminated CFRP laminate.

Funder

Key R&D Program of Jiangsu Province of China

National Natural Science Foundation of China

Scientific Research Foundation of the Graduate School of Southeast University

Publisher

AIP Publishing

Subject

General Physics and Astronomy

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3