Epidemic spreading under game-based self-quarantine behaviors: The different effects of local and global information

Author:

Huang Zegang12,Shu Xincheng12,Xuan Qi12,Ruan Zhongyuan12ORCID

Affiliation:

1. Institute of Cyberspace Security, Zhejiang University of Technology 1 , Hangzhou 310023, China

2. Binjiang Cyberspace Security Institute of ZJUT 2 , Hangzhou 310051, China

Abstract

During the outbreak of an epidemic, individuals may modify their behaviors in response to external (including local and global) infection-related information. However, the difference between local and global information in influencing the spread of diseases remains inadequately explored. Here, we study a simple epidemic model that incorporates the game-based self-quarantine behavior of individuals, taking into account the influence of local infection status, global disease prevalence, and node heterogeneity (non-identical degree distribution). Our findings reveal that local information can effectively contain an epidemic, even with only a small proportion of individuals opting for self-quarantine. On the other hand, global information can cause infection evolution curves shaking during the declining phase of an epidemic, owing to the synchronous release of nodes with the same degree from the quarantined state. In contrast, the releasing pattern under the local information appears to be more random. This shaking phenomenon can be observed in various types of networks associated with different characteristics. Moreover, it is found that under the proposed game-epidemic framework, a disease is more difficult to spread in heterogeneous networks than in homogeneous networks, which differs from conventional epidemic models.

Funder

Key Research and Development Program of Zhejiang Province

National Natural Science Foundation of China-Zhejiang Joint Fund for the Integration of Industrialization and Informatization

National Natural Science Foundation of China

Publisher

AIP Publishing

Subject

Applied Mathematics,General Physics and Astronomy,Mathematical Physics,Statistical and Nonlinear Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3