Can a coarse-grained water model capture the key physical features of the hydrophobic effect?

Author:

Ghosh Kuntal1,Loose Timothy D.1,Voth Gregory A.1ORCID

Affiliation:

1. Department of Chemistry, Chicago Center for Theoretical Chemistry, James Franck Institute, and Institute for Biophysical Dynamics, The University of Chicago , Chicago, Illinois 60637, USA

Abstract

Coarse-grained (CG) molecular dynamics can be a powerful method for probing complex processes. However, most CG force fields use pairwise nonbonded interaction potentials sets, which can limit their ability to capture complex multi-body phenomena such as the hydrophobic effect. As the hydrophobic effect primarily manifests itself due to the nonpolar solute affecting the nearby hydrogen bonding network in water, capturing such effects using a simple one CG site or “bead” water model is a challenge. In this work, we systematically test the ability of CG one site water models for capturing critical features of the solvent environment around a hydrophobe as well as the potential of mean force (PMF) of neopentane association. We study two bottom-up models: a simple pairwise (SP) force-matched water model constructed using the multiscale coarse-graining method and the Bottom-Up Many-Body Projected Water (BUMPer) model, which has implicit three-body correlations. We also test the top-down monatomic (mW) and the Machine Learned mW (ML-mW) water models. The mW models perform well in capturing structural correlations but not the energetics of the PMF. BUMPer outperforms SP in capturing structural correlations and also gives an accurate PMF in contrast to the two mW models. Our study highlights the importance of including three-body interactions in CG water models, either explicitly or implicitly, while in general highlighting the applicability of bottom-up CG water models for studying hydrophobic effects in a quantitative fashion. This assertion comes with a caveat, however, regarding the accuracy of the enthalpy–entropy decomposition of the PMF of hydrophobe association.

Funder

National Science Foundation

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3