Perspectives on domain engineering for dielectric energy storage thin films

Author:

Liu Yiqian1ORCID,Yang Bingbing1,Lan Shun1,Pan Hao2ORCID,Nan Ce-Wen1ORCID,Lin Yuan-Hua1

Affiliation:

1. State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, People's Republic of China

2. Department of Materials Science and Engineering, University of California, Berkeley, Berkeley, California 94720, USA

Abstract

Dielectric energy storage capacitors as emerging and imperative components require both high energy density and efficiency. Ferroelectric-based dielectric thin films with large polarizability, high breakdown strength, and miniaturization potential hold promises for competitive integrated and discrete energy storage devices. Since ferroelectric domains are central to polarization hysteresis loops and, hence, energy storage performances, domain engineering has been widely used in dielectric thin films. In this Perspective, we focus on the most state-of-the-art dielectric energy storage films in the framework of domain engineering. Generally applicable domain engineering strategies are overviewed, followed by articulative examples of their implementation in modulating domain sizes and symmetries that enhance the energy storage. Finally, we envision prospects of further improvements of dielectric thin films within domain engineering and beyond.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

AIP Publishing

Subject

Physics and Astronomy (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3