Rayleigh wave and super-shear evanescent wave excited by laser-induced shock at a soft solid–liquid interface observed by photoelasticity imaging technique

Author:

Nguyen Thao Thi Phuong12ORCID,Tanabe-Yamagishi Rie3ORCID,Ito Yoshiro4ORCID

Affiliation:

1. Institute of Research and Development, Duy Tan University, 550000 Danang, Vietnam

2. Faculty of Natural Science, Duy Tan University, 550000 Danang, Vietnam

3. Department of Intelligent Mechanical Engineering, Fukuoka Institute of Technology, 3-30-1 Wajiro-higashi, Higashi-ku, Fukuoka 811-0295, Japan

4. Department of Mechanical Engineering, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata 940-2188, Japan

Abstract

We investigated laser-induced shock excitation of elastic surface waves at a free surface and a soft solid–liquid interface using a custom-designed photoelasticity imaging technique. Epoxy-resin and pure water were selected as the solid and liquid media. The elastic surface waves were excited via a shock process induced by focusing a single nanosecond laser pulse on the solid surface. To confirm the experimental observations, the roots of the Rayleigh and Stoneley equations were calculated. For a free surface, we present an entire-field observation of elastic surface waves, which includes a super-shear evanescent wave (SEW) that propagates faster than the shear wave but slower than the longitudinal wave. For a soft solid–liquid interface, we demonstrate the presence of a non-leaky Rayleigh wave that corresponds to a real root of the Stoneley equation. We also evidence the existence of a SEW that propagates 1.7 times faster than the shear speed in the solid and corresponds to a complex conjugate root of the Stoneley equation. These results correct the previously accepted notion that the Scholte wave is the only surface wave that can be generated at a soft solid–liquid interface.

Publisher

AIP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3