A pre-time-zero spatiotemporal microscopy technique for the ultrasensitive determination of the thermal diffusivity of thin films

Author:

Varghese Sebin1ORCID,Mehew Jake Dudley1ORCID,Block Alexander1ORCID,Reig David Saleta1ORCID,Woźniak Paweł2ORCID,Farris Roberta1ORCID,Zanolli Zeila3ORCID,Ordejón Pablo1ORCID,Verstraete Matthieu J.4ORCID,van Hulst Niek F.25ORCID,Tielrooij Klaas-Jan1ORCID

Affiliation:

1. Catalan Institute of Nanoscience and Nanotechnology (ICN2), BIST & CSIC, Campus UAB 1 , Bellaterra (Barcelona) 08193, Spain

2. ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology 2 , 08860 Castelldefels, Barcelona, Spain

3. Chemistry Department and ETSF, Debye Institute for Nanomaterials Science, Utrecht University 3 , Utrecht, The Netherlands

4. Nanomat, Q-Mat, CESAM, and European Theoretical Spectroscopy Facility, Université de Liège 4 , B-4000 Liège, Belgium

5. ICREA-Institució Catalana de Recerca i Estudis Avançats 5 , 08010 Barcelona, Spain

Abstract

Diffusion is one of the most ubiquitous transport phenomena in nature. Experimentally, it can be tracked by following point spreading in space and time. Here, we introduce a spatiotemporal pump–probe microscopy technique that exploits the residual spatial temperature profile obtained through the transient reflectivity when probe pulses arrive before pump pulses. This corresponds to an effective pump–probe time delay of 13 ns, determined by the repetition rate of our laser system (76 MHz). This pre-time-zero technique enables probing the diffusion of long-lived excitations created by previous pump pulses with nanometer accuracy and is particularly powerful for following in-plane heat diffusion in thin films. The particular advantage of this technique is that it enables quantifying thermal transport without requiring any material input parameters or strong heating. We demonstrate the direct determination of the thermal diffusivities of films with a thickness of around 15 nm, consisting of the layered materials MoSe2 (0.18 cm2/s), WSe2 (0.20 cm2/s), MoS2 (0.35 cm2/s), and WS2 (0.59 cm2/s). This technique paves the way for observing nanoscale thermal transport phenomena and tracking diffusion of a broad range of species.

Funder

HORIZON EUROPE European Research Council

Publisher

AIP Publishing

Subject

Instrumentation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3