Determining the driving radiation flux on capsule in Hohlraum for indirect drive inertial confinement fusion

Author:

Huo Wen Yi1ORCID,Chen Yao-Hua1,Cao Hui1ORCID,Ren Guoli1ORCID,Li Kai1,Lan Ke12ORCID

Affiliation:

1. Institute of Applied Physics and Computational Mathematics 1 , Beijing 100088, China

2. HEDPS, Center for Applied Physics and Technology, and College of Engineering, Peking University 2 , Beijing 100871, China

Abstract

In 2021, the fusion yield of 1.35 MJ was produced at NIF by using indirect drive inertial confinement fusion (ICF), indicating that indirect drive ICF has reached ignition. However, the driving radiation flux on capsule inside Hohlraums is still a puzzle in indirect drive ICF studies. The energy deficit at NIF is still neither well understood nor solved. In this paper, we proposed a scheme to determine the driving radiation flux on the capsule by using the combination of the shock wave technique and the reemitted radiation flux measurement. In this scheme, a witness sample is placed in the Hohlraum center as the surrogate of the capsule. The shock velocity in the witness sample is measured by a streaked optical pyrometer from one side, and the temporal reemitted radiation flux is measured by a space-resolved flat response x-ray detector. Then, the peak of the radiation flux is determined by the shock velocity, and the time behavior of the radiation flux is determined by the reemitted flux through the numerical simulation of radiation hydrodynamic code. The rules for designing the witness sample and an example of applying this scheme to determine the driving radiation flux on capsule inside the octahedral spherical Hohlraum are presented in detail.

Funder

National Natural Foundation of China

Publisher

AIP Publishing

Subject

Condensed Matter Physics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3