Neural stochastic differential equations for particle dispersion in large-eddy simulations of homogeneous isotropic turbulence

Author:

Williams J.1ORCID,Wolfram U.1ORCID,Ozel A.1ORCID

Affiliation:

1. School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom

Abstract

In dilute turbulent particle-laden flows, such as atmospheric dispersion of pollutants or virus particles, the dynamics of tracer-like to low inertial particles are significantly altered by the fluctuating motion of the carrier fluid phase. Neglecting the effects of fluid velocity fluctuations on particle dynamics causes poor prediction of particle transport and dispersion. To account for the effects of fluid phase fluctuating velocity on the particle transport, stochastic differential equations coupled with large-eddy simulation are proposed to model the fluid velocity seen by the particle. The drift and diffusion terms in the stochastic differential equation are modeled using neural networks (“neural stochastic differential equations”). The neural networks are trained with direct numerical simulations (DNS) of decaying homogeneous isotropic turbulence at low and moderate Reynolds numbers. The predictability of the proposed models is assessed against DNS results through a priori analyses and a posteriori simulations of decaying homogeneous isotropic turbulence at low-to-high Reynolds numbers. Total particle fluctuating kinetic energy is under-predicted by 40% with no model, compared to the DNS data. In contrast, the proposed model predictions match total particle fluctuating kinetic energy to within 5% of the DNS data for low- to high-inertia particles. For inertial particles, the model matches the variance of uncorrelated particle velocity to within 10% of DNS results, compared to 60%–70% under-prediction with no model. It is concluded that the proposed model is applicable for flow configurations involving tracer and inertial particles, such as transport and dispersion of pollutants or virus particles.

Funder

The Carnegie-Trust for the Universities of Scotland

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3