Addressing accuracy by prescribing precision: Bayesian error estimation of point defect energetics

Author:

Timmins Andrew1ORCID,Kurchin Rachel C.1ORCID

Affiliation:

1. Materials Science and Engineering, Carnegie Mellon University , Pittsburgh, Pennsylvania 15213, USA

Abstract

With density functional theory (DFT), it is possible to calculate the formation energy of charged point defects and in turn to predict a range of experimentally relevant quantities, such as defect concentrations, charge transition levels, or recombination rates. While prior efforts have led to marked improvements in the accuracy of such calculations, comparatively modest effort has been directed at quantifying their uncertainties. However, in the broader DFT research space, the development of Bayesian Error Estimation Functionals (BEEF) has enabled uncertainty quantification (UQ) for other properties. In this paper, we investigate the utility of BEEF as a tool for UQ of defect formation energies. We build a pipeline for propagating BEEF energies through a formation-energy calculation and test it on intrinsic defects in several materials systems spanning a variety of chemistries, bandgaps, and crystal structures, comparing to prior published results where available. We also assess the impact of aligning to a deep-level transition rather than to the VBM (valence band maximum). We observe negligible dependence of the estimated uncertainty upon a supercell size, though the relationship may be obfuscated by the fact that finite-size corrections cannot be computed separately for each member of the BEEF ensemble. Additionally, we find an increase in estimated uncertainty with respect to the absolute charge of a defect and the relaxation around the defect site without deep-level alignment, but this trend is absent when the alignment is applied. While further investigation is warranted, our results suggest that BEEF could be a useful method for UQ in defect calculations.

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3