Numerical study on flow and wear characteristics of dense fine particle solid–liquid two-phase flow in centrifugal pump

Author:

Wang Yanping1ORCID,Tao Ruilin1,Han Chuanfeng1,Li Weiqin1,He Tielin1,Zhu Zuchao1ORCID

Affiliation:

1. Key Laboratory of Fluid Transmission Technology of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, Zhejiang Province 310018, China

Abstract

The solid–liquid two-phase centrifugal pump is one of the core power equipment of solid phase material hydraulic transportation, widely used in hydraulic engineering, petrochemical industry, marine metal mineral exploitation, urban sewage treatment, and other sectors of the national economy. There is a significant increase in the need to transport dense fine particle slurry in industrial production. Under this condition, the influence of particle parameters on the performance of the centrifugal pump is still not clear. In order to study the flow and wear characteristics of dense fine particle solid–liquid two-phase transported by an open impeller centrifugal pump, the Re-Normalization Group k − ε and dense discrete phase models in Fluent were used to describe the characteristics of the solid–liquid two-phase flow. The numerical model is validated with the experimental data of the pump’s performance. The study indicates that the particle size and concentration have great influence on the wear of the impeller. The wear of the blade pressure surface is the most serious. With the increase of particle concentration and size, the wear area expands to the leading edge and the upper surface of the blade. These results can provide supporting theories for the design of a dense fine particle solid–liquid two-phase medium conveying pump.

Funder

National Natural Science Foundation of China

Publisher

AIP Publishing

Subject

General Physics and Astronomy

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3