Self-consistent hopping theory of activated relaxation and diffusion of dilute penetrants in dense crosslinked polymer networks

Author:

Mei Baicheng12ORCID,Lin Tsai-Wei23ORCID,Sing Charles E.123ORCID,Schweizer Kenneth S.1234ORCID

Affiliation:

1. Department of Materials Science, University of Illinois 1 , Urbana, Illinois 61801, USA

2. Materials Research Laboratory, University of Illinois 2 , Urbana, Illinois 61801, USA

3. Department of Chemical and Biomolecular Engineering, University of Illinois 3 , Urbana, Illinois 61801, USA

4. Department of Chemistry, University of Illinois 4 , Urbana, Illinois 61801, USA

Abstract

We generalize a microscopic statistical mechanical theory of the activated dynamics of dilute spherical penetrants in glass-forming liquids to study the influence of crosslinking in polymer networks on the penetrant relaxation time and diffusivity over a wide range of temperature and crosslink fraction (fn). Our calculations are relevant to recent experimental studies of a nm-sized molecule diffusing in poly-(n-butyl methacrylate) networks. The theory predicts the penetrant relaxation time increases exponentially with the glass transition temperature, Tg(fn), which grows roughly linearly with the square root of fn due to the coupling of local hopping to longer-range collective elasticity. Moreover, Tg is also found to be proportional to a geometric confinement parameter defined as the ratio of the penetrant diameter to the mean network mesh size. The decoupling ratio of the penetrant and Kuhn segment alpha times displays a complex non-monotonic dependence on fn and temperature that is well collapsed based on the variable Tg(fn)/T. A model for the penetrant diffusion constant that combines activated relaxation and entropic mesh confinement is proposed, which results in a significantly stronger suppression of mass transport with degree of effective supercooling than predicted for the penetrant alpha time. This behavior corresponds to a new network-based type of “decoupling” of diffusion and relaxation. In contrast to the diffusion of larger nanoparticles in high temperature rubbery networks, our analysis in the supercooled regime suggests that for the penetrants studied the mesh confinement effects are of secondary importance relative to the consequences of crosslink-induced slowing down of activated hopping of glassy physics origin.

Funder

U.S. Department of Energy

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3