Cascaded four-wave mixing process: A key to realize super-continuous coherent radiation with dual stimulated Raman scattering in mixed solutions

Author:

Wang Haixin12ORCID,Dou Zhenguo12ORCID,Liu Xiaokai12,Li Aijun12ORCID,Jia Erna3,Sun Chenglin1,Men Zhiwei12ORCID

Affiliation:

1. Key Laboratory of Physics and Technology for Advanced Batteries, College of Physics, Jilin University 1 , Changchun 130012, China

2. College of Physics, Jilin University 2 , Changchun 130012, China

3. Department of Gastroenterology, China-Japan Union Hospital of Jilin University 3 , Changchun 130033, China

Abstract

We proposed a coherent radiation scheme based on double-stimulated Raman scattering (SRS) induced cascaded four-wave mixing (FWM) in a mixed methanol–ethanol solution. The SRS of methanol has two characteristic vibrational peaks, which are attributed to the symmetric stretching vibration of –CH3 and the antisymmetric stretching vibration of –CH3. The addition of ethanol enhances the antisymmetric stretching vibration mode, and intensities of two peaks were similar when the volume ratio of methanol to ethanol was 7.5:2.5. Resonant amplification of the two SRS signals is achieved by refocusing the scattered light, and the stronger self-focusing effect not only converges the two beams but also generates a plasma-enhanced SRS process, realizing cascaded FWM. The frequency difference Δω between two FWM beams matches the frequency difference ΔΩ between the vibrational energy levels of the symmetric and antisymmetric stretching vibrations, and the stimulated excitation enhances FWM signals. The output coherent radiation light is a large broadband ranging from 592 to 668 nm and 721 to 797 nm, with a wavelength interval of about 3 nm. The intensity of light radiated at different wavelengths is not the same, with the strongest light at the center of the wavelength (630 and 759 nm). This technique has the potential to contribute to the development of a multi-wavelength cascaded Raman laser.

Funder

National Natural Science Foundation of China

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3