Enhancement of spin–flop-induced magnetic hysteresis in van der Waals magnet (Fe1−xCox)5GeTe2

Author:

Ohta Tomoharu1ORCID,Kurokawa Kaito1ORCID,Jiang Nan123ORCID,Yamagami Kohei4ORCID,Okada Yoshinori4ORCID,Niimi Yasuhiro123ORCID

Affiliation:

1. Department of Physics, Graduate School of Science, Osaka University 1 , Toyonaka, Osaka 560-0043, Japan

2. Center for Spintronics Research Network, Osaka University 2 , Toyonaka, Osaka 560-8531, Japan

3. Institute for Open and Transdisciplinary Research Initiatives, Osaka University 3 , Osaka 565-0871, Japan

4. Okinawa Institute of Science and Technology Graduate University 4 , Okinawa 904-0495, Japan

Abstract

We have systematically studied magnetotransport properties in van der Waals (vdW) magnetic materials, (Fe1−xCox)5GeTe2, where the magnetic phase changes from the ferromagnetic with the perpendicular magnetic anisotropy (PMA; x = 0 , 0.05) or with the in-plane magnetic anisotropy (IMA; x = 0.19) to the antiferromagnetic (x = 0.46) with the PMA. We have demonstrated that such magnetic properties seen in bulk still remain even in thin film devices. An anomalous Hall resistance with magnetic hysteresis was clearly observed in the low Co substitution ( x = 0 , 0.05). The anomalous Hall effect was still observable for x = 0.19, but the magnetic hysteresis vanishes because of the IMA. In the antiferromagnetic region, there was no anomalous Hall effect in the low magnetic field range, but a clear hysteresis was observed at 2.5 T where the spin–flop transition takes place. This hysteresis can be seen only below 30 K and monotonically decreases with increasing temperature. We argue that the defects at a specific site in this system and also the resistance upturn below 30 K could be related to the hysteric behavior at the spin–flop transition. Our findings provide a recipe for the use of (Fe1−xCox)5GeTe2 with different Co substitutions to construct vdW magnetic devices.

Funder

Japan Society for the Promotion of Science

Fusion Oriented REsearch for disruptive Science and Technology

Mazda Foundation

Shimadzu

Yazaki Memorial Foundation for Science and Technology

Support Center for Advanced Telecommunications Technology Research Foundation

Asahi Glass Foundation

Publisher

AIP Publishing

Subject

Physics and Astronomy (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3