Coupling between a turbulent outer flow and an adjacent porous medium: High resolved Particle Image Velocimetry measurements

Author:

Härter J.1ORCID,Martínez D. S.2ORCID,Poser R.1ORCID,Weigand B.1ORCID,Lamanna G.1ORCID

Affiliation:

1. Institute of Aerospace Thermodynamics (ITLR), University of Stuttgart 1 , Pfaffenwaldring 31, 70569 Stuttgart, Germany

2. Centro Universitario de la Defensa, Universidad Politécnica de Cartagena, C/Coronel López Peña S/N, Santiago de La Ribera 2 , 30729 Murcia, Spain

Abstract

The existence of large-scale turbulent structures within a porous medium, generated through the interaction with a turbulent outer flow, is a highly debated topic, albeit most of the analysis is based on computational studies. This study contributes to the ongoing discussion by providing detailed point-measurements of the velocity in both regions by means of Particle Image Velocimetry (PIV). Two porous models of different porosity are investigated at three Reynolds numbers. The design of the experiments is based on theoretical studies to guarantee the presence of an unperturbed viscous layer at the interface (alias permeability Reynolds numbers of order one). Under these conditions and in compliance with theoretical predictions, the PIV data show the rapid dumping of turbulent fluctuations within the first pore cavities and can be used to validate closure models for volume-averaged computational studies. A point-data analysis is applied in the interfacial region by requiring continuity of tangential velocity and shear stress. The presence of the attached viscous layer implies that the coupling condition for momentum transfer must be controlled by shear, leading to the well-known Beavers and Joseph coupling condition. PIV data corroborate this statement and show the close interdependency between the penetration depth of the outer flow in the porous media and the characteristics of the vortical secondary flows induced by the strain rate at the pore scale. Consequently, the Beavers and Joseph-slip coefficient depends only upon the topology of the porous medium, at least as long as no transition to a perturbed mixing layer occurs at the interface.

Funder

Deutsche Forschungsgemeinschaft

Sino-German Center for Research Promotion

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3